设a为等差数列b是等比数列已知a1=4b1=6

an为等差数列,bn为等比数列,若a1=b1,a(2n+1)=b(2n+1),比较a(n+1),b(n+1)... an为等差数列,bn为等比数列,若a1=b1,a(2n+1)=b(2n+1),比较a(n+1),b(n+1) 展开
 我来答
蔺瑞佟佳书易
2019-10-06 · TA获得超过1056个赞
知道小有建树答主
回答量:2885
采纳率:100%
帮助的人:16万
展开全部
A1+A(2n+1)=2A1+2nd=2A(n+1)=B1+B(2n+1)=B1+B1×q^(2n)=B1(1+q^(2n))
2B(n+1)=2B1×q^n
比较A(n+1)与B(n+1)的大小,即比较1+q^(2n)与2q^n的大小
1+q^(2n)-2q^n=(1-q^n)^2>=0
A(n+1)>=B(n+1)
当q=1时,此时d=0,上式等号成立.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式