y=|sinx|+|cosx|的单调性

 我来答
释靖止灵凡
2020-06-27 · TA获得超过3745个赞
知道大有可为答主
回答量:3092
采纳率:31%
帮助的人:209万
展开全部
解:
①当x在第一象限时,即[2kπ,π/2+2kπ),k∈Z时:sinx≥0,cosx>0
∴y=sinx+cosx=√2sin(x+π/2)
sinx在此区间为增函数,而sin(x+π/2)是由sinx向左移动π/2所得
所以sin(x+π/2)为先增后减,极点为π/4+2kπ
∴在区间[2kπ,π/4+2kπ)上为增函数,[π/4+2kπ,π/2+2kπ)上为减函数
②当x在第二象限时,即[π/2+2kπ,π+2kπ),k∈Z时:sinx>0,cosx≤0
∴y=sinx-cosx=√2sin(x-π/2)
sinx在此区间为减函数,而sin(x-π/2)是由sinx向右移动π/2所得
所以sin(x-π/2)为先增后减,极点为3π/4+2kπ
∴在区间[π/2+2kπ,3π/4+2kπ)上为增函数,[3π/4+2kπ,π+2kπ)上为减函数
③当x在第三象限时,即[π+2kπ,3π/2+2kπ),k∈Z时:sinx≤0,cosx<0
∴y=-sinx-cosx=-√2sin(x+π/2)
-sinx在此区间为增函数,而-sin(x+π/2)是由-sinx向左移动π/2所得
所以sin(x-π/2)为先增后减,极点为5π/4+2kπ
∴在区间[π+2kπ,5π/4+2kπ)上为增函数,[5π/4+2kπ,3π/2+2kπ)上为减函数
④当x在第四象限时,即[3π/2+2kπ,2π+2kπ),k∈Z时:sinx<0,cosx≥0
∴y=-sinx+cosx=-√2sin(x-π/2)
-sinx在此区间为减函数,而-sin(x-π/2)是由sinx向右移动π/2所得
所以sin(x-π/2)为先增后减,极点为7π/4+2kπ
∴在区间[3π/2+2kπ,7π/4+2kπ)上为增函数,[7π/4+2kπ,2π+2kπ)上为减函数
综合①②③④所述:
y的增区间为[2kπ,π/4+2kπ)∪[π/2+2kπ,3π/4+2kπ)∪[π+2kπ,5π/4+2kπ)∪[3π/2+2kπ,7π/4+2kπ)
y的减区间为[π/4+2kπ,π/2+2kπ)∪[3π/4+2kπ,π+2kπ)∪[5π/4+2kπ,3π/2+2kπ)∪[7π/4+2kπ,2π+2kπ)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式