高数等价无穷小问题?
展开全部
x->0
sinx = x-(1/6)x^3 +o(x^3)
e^(sinx)
=e^[x-(1/6)x^3 +o(x^3)]
=e^x .{e^[-(1/6)x^3 +o(x^3)]}
=e^x. [1-(1/6)x^3 +o(x^3) ]
tanx = x+(1/3)x^3 +o(x^3)
e^(tanx)
=e^[x+(1/3)x^3 +o(x^3)]
=e^x .{e^[(1/3)x^3 +o(x^3)]}
=e^x. [1+(1/3)x^3 +o(x^3)]
e^(sinx)-e^(tanx)
=e^x . { [1-(1/6)x^3 +o(x^3)] -[1+(1/3)x^3 +o(x^3)] }
=e^x .[-(1/2)x^3 +o(x^3)]
=-(1/2)x^3 +o(x^3)
=> n=3
ans : C
sinx = x-(1/6)x^3 +o(x^3)
e^(sinx)
=e^[x-(1/6)x^3 +o(x^3)]
=e^x .{e^[-(1/6)x^3 +o(x^3)]}
=e^x. [1-(1/6)x^3 +o(x^3) ]
tanx = x+(1/3)x^3 +o(x^3)
e^(tanx)
=e^[x+(1/3)x^3 +o(x^3)]
=e^x .{e^[(1/3)x^3 +o(x^3)]}
=e^x. [1+(1/3)x^3 +o(x^3)]
e^(sinx)-e^(tanx)
=e^x . { [1-(1/6)x^3 +o(x^3)] -[1+(1/3)x^3 +o(x^3)] }
=e^x .[-(1/2)x^3 +o(x^3)]
=-(1/2)x^3 +o(x^3)
=> n=3
ans : C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询