设L为椭圆X^2+Y^2/2=1,其周长为a,则曲线积分∮L(2X^2+XY+Y^2)dxdy=?

 我来答
崇元化65
高粉答主

2020-07-23 · 说的都是干货,快来关注
知道小有建树答主
回答量:202
采纳率:100%
帮助的人:5万
展开全部

L为椭圆X^2+Y^2/2=1,其周长为a,则曲线积分∮L(2X^2+XY+Y^2)dxdy=2a,如下:

扩展资料:

在曲线积分中,积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和。

带有权重是曲线积分与一般区间上的积分的主要不同点。物理学中的许多简单的公式(比如说)在推广之后都是以曲线积分的形式出现。

参考资料来源:百度百科-曲线积分

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式