6个回答
展开全部
let
x=(3/5)sinu
dx=(3/5)cosu du
x=0, u=0
x=0.6, u=π/2
∫(0->0.6) x^2/√(9-25x^2) dx
=∫(0->π/2) [(9/25)(sinu)^2/(3/5)cosu] . [(3/5)cosu du ]
=(9/25)∫(0->π/2) (sinu)^2 du
=(9/50)∫(0->π/2) (1-cos2u) du
=(9/50) [u-(1/2)sin2u]|(0->π/2)
=(9/100)π
x=(3/5)sinu
dx=(3/5)cosu du
x=0, u=0
x=0.6, u=π/2
∫(0->0.6) x^2/√(9-25x^2) dx
=∫(0->π/2) [(9/25)(sinu)^2/(3/5)cosu] . [(3/5)cosu du ]
=(9/25)∫(0->π/2) (sinu)^2 du
=(9/50)∫(0->π/2) (1-cos2u) du
=(9/50) [u-(1/2)sin2u]|(0->π/2)
=(9/100)π
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫<0,0.6>[x²/√(9-25x²)]dx=(1/3)∫<0,0.6>x²dx/√[1-(5x/3)²]
【 x=(3/5)sinu,dx=(3/5)cosudu;x=0时u=0;x=0.6时u=π/2】
=(1/3)∫<0,π/2>[(9/25)sin²u]/√(1-sin²u)](3/5)cosudu
=(9/125)∫<0,π/2>sin²udu=(9/250)∫<0,π/2>(1-cos2u)du
=(9/250)[u-(1/2)sin2u]<0,π/2>=9π/500;
【 x=(3/5)sinu,dx=(3/5)cosudu;x=0时u=0;x=0.6时u=π/2】
=(1/3)∫<0,π/2>[(9/25)sin²u]/√(1-sin²u)](3/5)cosudu
=(9/125)∫<0,π/2>sin²udu=(9/250)∫<0,π/2>(1-cos2u)du
=(9/250)[u-(1/2)sin2u]<0,π/2>=9π/500;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询