数列1,1,2,3,5,8,13,21,34,…的通项公式怎么求啊?

 我来答
义洛真静枫
2020-05-04 · TA获得超过1031个赞
知道小有建树答主
回答量:1704
采纳率:100%
帮助的人:9.6万
展开全部
通项公式的推导
  斐波那契数列:1、1、2、3、5、8、13、21、……
  如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
  F(0)
=
0,F(1)=1,F(n)=F(n-1)+F(n-2)
(n≥2),
  显然这是一个线性递推数列。
  方法一:利用特征方程(线性代数解法)
  线性递推数列的特征方程为:
  X^2=X+1
  解得
  X1=(1+√5)/2,,X2=(1-√5)/2。
  则F(n)=C1*X1^n
+
C2*X2^n。
  ∵F(1)=F(2)=1。
  ∴C1*X1
+
C2*X2。
  C1*X1^2
+
C2*X2^2。
  解得C1=√5/5,C2=-√5/5。
  ∴F(n)=(√5/5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}(√5表示根号5)。
  方法二:待定系数法构造等比数列1(初等代数解法)
  设常数r,s。
  使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
  则r+s=1,
-rs=1。
  n≥3时,有。
  F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
  F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。
  F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。
  ……
  F(3)-r*F(2)=s*[F(2)-r*F(1)]。
  联立以上n-2个式子,得:
  F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]。
  ∵s=1-r,F(1)=F(2)=1。
  上式可化简得:
  F(n)=s^(n-1)+r*F(n-1)。
  那么:
  F(n)=s^(n-1)+r*F(n-1)。
  =
s^(n-1)
+
r*s^(n-2)
+
r^2*F(n-2)。
  =
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+
r^3*F(n-3)。
  ……
  =
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)*F(1)。
  =
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)。
  (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。
  =[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。
  =(s^n
-
r^n)/(s-r)。
  r+s=1,
-rs=1的一解为
s=(1+√5)/2,r=(1-√5)/2。
  则F(n)=(√5/5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}。
  方法三:待定系数法构造等比数列2(初等代数解法)
  已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。
  解
:设an-αa(n-1)=β(a(n-1)-αa(n-2))。
  得α+β=1。
  αβ=-1。
  构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。
  所以。
  an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。
  an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。
  由式1,式2,可得。
  an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。
  an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。
  将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式