在数列{an}中,已知an=2,对任意正整数n都有nan+1=2(n+1)an,求an的通项公式
2个回答
展开全部
na(n+1)=2(n+1)an
a(n+1)/an = 2(n+1)/n
an/a(n-1) = 2n/(n-1)
an/a1 = 2^(n-1) . n
an = n.2^n
a(n+1)/an = 2(n+1)/n
an/a(n-1) = 2n/(n-1)
an/a1 = 2^(n-1) . n
an = n.2^n
追问
我要详细答案啊
追答
na(n+1)=2(n+1)an
a(n+1)/an = 2(n+1)/n
an/a(n-1) = 2n/(n-1) (1)
a(n-1)/a(n-2) = 2(n-1)/(n-2) (2)
..
...
a2/a1 = 2(2)/1 (n-1)
(1)*(2)*(3)*...*(n-1)
an/a1 = 2^(n-1). n/1
an/a1 = 2^(n-1) . n
an = n.2^n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询