设函数F(X)在闭区间[a b]上连续,在(a,b)内可导,

证明:在(a,b)内至少存在一点s,使bf(b)-af(a)/b-a=f(s)+sf'(s).寻高手解此题要详细步骤谢谢!!!...证明:在(a,b)内至少存在... 证明:在(a,b)内至少存在一点s,使bf(b)-af(a)/b-a=f(s)+sf'(s).寻高手解此题要详细步骤谢谢!!!... 证明:在(a,b)内至少存在一点s,使bf(b)-af(a)/b-a=f(s)+sf '(s). 寻高手解此题要详细步骤 谢谢!!! 展开 展开
 我来答
茹翊神谕者

2023-07-16 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25127

向TA提问 私信TA
展开全部

简单分析一下,详情如图所示

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
邴琭乌孙妙婧
2020-01-04 · TA获得超过3784个赞
知道大有可为答主
回答量:3090
采纳率:26%
帮助的人:223万
展开全部
兄弟,首先你这个题当中有一点需要改一下,就是“设函数F(X)在闭区间[a
b]上连续,在(a,b)内可导”当中的“F(X)”改成“f(x)”才行。
解:做一个辅助函数F(x)=xf(x),然后对于F(x)应用拉格朗日中值定理:由于函数f(X)在闭区间[a
b]上连续,在(a,b)内可导,很容易得知函数F(X)在闭区间[a
b]上连续,在(a,b)内可导,因此必存在一点s,使得
(F(a)-F(b))/(b-a)=F'(s)然后将F(x)=xf(x)代入即可得到bf(b)-af(a)/b-a=f(s)+sf
'(s).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式