
已知X1,X2为方程X^2+3X+1=0的两实根,则X1^3+8X2+20等于多少?
展开全部
X1,X2为方程X^2+3X+1=0的两实根
x1^2=-1-3x1
x1+x2=-3
x1*x2=1
X1^3+8X2+20
=x1(x1^2)+8x2+20
=x1(-1-3x1)+8x2+20
=-x1-3x1^2+8x2+20
=-x1-3(-1-3x1)+8x2+20
=-x1+3+9x1+8x2+20
=8(x1+x2)+23
=-24+23=1
x1^2=-1-3x1
x1+x2=-3
x1*x2=1
X1^3+8X2+20
=x1(x1^2)+8x2+20
=x1(-1-3x1)+8x2+20
=-x1-3x1^2+8x2+20
=-x1-3(-1-3x1)+8x2+20
=-x1+3+9x1+8x2+20
=8(x1+x2)+23
=-24+23=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询