![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知二次函数f(x)=ax^2+bx+c(a,b,c属于R)),且f(1)=-a/2,设a>2c>b.
1个回答
展开全部
借用你的条件:a>0,b<0
解:f(1)=a+b+c= -a/2 3/2a+b+c=0 3a+2b+2c=0
所以:f(2)=4a+2b+c=a-c>0
f(x)导数f’(x)=2ax+b 令f’(x)=0 则x= -b/2a<1/2
所以f(x)在(1/2,+无穷)是单调函数,f(x)在(1,2)内也是单调函数
f(1)= -a/2<0 f(2)=a-c>0
因此f(x)=0 在(1,2)上必然有一个实数根
即:f(x)=0至少有一个实根在区间(0,2)内
解:f(1)=a+b+c= -a/2 3/2a+b+c=0 3a+2b+2c=0
所以:f(2)=4a+2b+c=a-c>0
f(x)导数f’(x)=2ax+b 令f’(x)=0 则x= -b/2a<1/2
所以f(x)在(1/2,+无穷)是单调函数,f(x)在(1,2)内也是单调函数
f(1)= -a/2<0 f(2)=a-c>0
因此f(x)=0 在(1,2)上必然有一个实数根
即:f(x)=0至少有一个实根在区间(0,2)内
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询