2个回答
展开全部
(x+1)y''+y'=ln(x+1)
y''+[1/(x+1)]y'=ln(x+1)/(x+1)
(x+1).[y''+[1/(x+1)]y' ]=ln(x+1)
d/dx [ (x+1)y' ] =ln(x+1)
(x+1)y' =∫ ln(x+1) dx
= xln(x+1) - ∫ x/(x+1) dx
= xln(x+1) - ∫ [ 1-1/(x+1)] dx
= xln(x+1) -x +ln|x+1| +C1
y' = [(x+1)ln(x+1) -x +C1 ]/(x+1)
= ln(x+1) - x/(x+1) + C1/(x+1)
y=∫ [ln(x+1) - x/(x+1) + C1/(x+1)] dx
=xln(x+1) -x +ln|x+1| - x + ln|x+1| + C1.ln|x+1| +C2
=(x+2+C1).ln(x+1) -2x +C2
=(x+C3).ln(x+1) -2x +C2
y''+[1/(x+1)]y'=ln(x+1)/(x+1)
(x+1).[y''+[1/(x+1)]y' ]=ln(x+1)
d/dx [ (x+1)y' ] =ln(x+1)
(x+1)y' =∫ ln(x+1) dx
= xln(x+1) - ∫ x/(x+1) dx
= xln(x+1) - ∫ [ 1-1/(x+1)] dx
= xln(x+1) -x +ln|x+1| +C1
y' = [(x+1)ln(x+1) -x +C1 ]/(x+1)
= ln(x+1) - x/(x+1) + C1/(x+1)
y=∫ [ln(x+1) - x/(x+1) + C1/(x+1)] dx
=xln(x+1) -x +ln|x+1| - x + ln|x+1| + C1.ln|x+1| +C2
=(x+2+C1).ln(x+1) -2x +C2
=(x+C3).ln(x+1) -2x +C2
追问
先谢了大神!辛苦了,我先消化一下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询