2个回答
展开全部
解:∵a1+a2+……+an=n^2an
∴a1+a2+……+a(n-1)=(n-1)^2a(n-1)
==>an=[a1+a2+……+a(n-1)+an]-[a1+a2+……+a(n-1)]
==>an=n^2an-(n-1)^2a(n-1)
==>(n^2-1)an=(n-1)^2a(n-1)
==>an=[(n-1)^2/(n^2-1)]a(n-1)
==>an=[(n-1)/(n+1)]a(n-1)......(1)
∵a1=1/2
∴由(1)式,得a2=(1/3)a1=(1!)/(3!)
a3=(2/4)a2=(2!)/(4!)
a4=(3/5)a3=(3!)/(5!)
..........
an=[(n-1)/(n+1)]a(n-1)=[(n-1)!/(n+1)!]
=1/[n(n+1)]
故an=1/[n(n+1)]
∴a1+a2+……+a(n-1)=(n-1)^2a(n-1)
==>an=[a1+a2+……+a(n-1)+an]-[a1+a2+……+a(n-1)]
==>an=n^2an-(n-1)^2a(n-1)
==>(n^2-1)an=(n-1)^2a(n-1)
==>an=[(n-1)^2/(n^2-1)]a(n-1)
==>an=[(n-1)/(n+1)]a(n-1)......(1)
∵a1=1/2
∴由(1)式,得a2=(1/3)a1=(1!)/(3!)
a3=(2/4)a2=(2!)/(4!)
a4=(3/5)a3=(3!)/(5!)
..........
an=[(n-1)/(n+1)]a(n-1)=[(n-1)!/(n+1)!]
=1/[n(n+1)]
故an=1/[n(n+1)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询