展开全部
(1)I = ∫<0, 1>(x+2)de^x = [(x+2)e^x]<0, 1> - ∫<0, 1>e^xdx
= 3e-2 - [e^x]<0, 1> = 2e-1.
(2)I = ∫<0, 2>(x-2)de^x = [(x-2)e^x]<0, 2> - ∫<0, 2>e^xdx
= 2 - [e^x]<0, 2> = 3-e^2.
(3)I = (1/2)∫<1, e>lnxd(x-1)^2
= (1/2)[(x-1)^2 lnx]<1, e> - (1/2)∫<1, e>[(x-1)^2/x]dx
= (1/2)(e-1)^2 - (1/2)[x^2/2-2x+lnx]<1, e>
= (1/2)(e-1)^2 - (1/2)[e^2/2-2e+5/2] = (e^2-3)/4
= 3e-2 - [e^x]<0, 1> = 2e-1.
(2)I = ∫<0, 2>(x-2)de^x = [(x-2)e^x]<0, 2> - ∫<0, 2>e^xdx
= 2 - [e^x]<0, 2> = 3-e^2.
(3)I = (1/2)∫<1, e>lnxd(x-1)^2
= (1/2)[(x-1)^2 lnx]<1, e> - (1/2)∫<1, e>[(x-1)^2/x]dx
= (1/2)(e-1)^2 - (1/2)[x^2/2-2x+lnx]<1, e>
= (1/2)(e-1)^2 - (1/2)[e^2/2-2e+5/2] = (e^2-3)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询