
3个回答
展开全部

2025-04-21 广告
基本释义,integrating sphere。具有高反射性内表面的空心球体。用来对处于球内或放在球外并靠近某个窗口处的试样对光的散射或发射进行收集的一种高效能器件。球上的小窗口可以让光进入并与检测器靠得较近。积分球又称为光通球,是一个中空...
点击进入详情页
本回答由上海蓝菲提供
展开全部
z = x^2+y^2, 2-z = x^2+y^2 联立,消去 z,
得两曲面交线在 xOy 坐标平面的投影, 即积分域 D:x^2+y^2 = 1.
化为极坐标,得所求体积
V = ∫∫<D>[(2-x^2+y^2)-(x^2+y^2)]dxdy
= ∫<0, 2π>dt∫<0, 1>(2-2r^2)rdr
= 2π[r^2-(1/2)r^4]<0, 1> = π
得两曲面交线在 xOy 坐标平面的投影, 即积分域 D:x^2+y^2 = 1.
化为极坐标,得所求体积
V = ∫∫<D>[(2-x^2+y^2)-(x^2+y^2)]dxdy
= ∫<0, 2π>dt∫<0, 1>(2-2r^2)rdr
= 2π[r^2-(1/2)r^4]<0, 1> = π
追问
为什么要相减?
追答
求两曲面所围立体体积公式就是上曲面减去下曲面再积分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
二重积分中dxdy表示面积微元,而体积=底面积×高,所以当被积函数f(x,y)表示空间区域的高时,这个二重积分的几何意义即为曲顶柱体的体积。
特别地,当被积函数f(x,y)=1,体积=底面积×高=底面积×1=底面积,那么其数值上恰好等于积分区域的面积,所以二重积分也能计算面积。
特别地,当被积函数f(x,y)=1,体积=底面积×高=底面积×1=底面积,那么其数值上恰好等于积分区域的面积,所以二重积分也能计算面积。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询