1个回答
展开全部
已知x²-3x+1=0
求√[(x²+1)/(x²-2)]的值
解:由x²-3x+1=0,得x²+1=3x;x²-2=3x-3;故√[(x²+1)/(x²-2)]=√[3x/(3x-3)]=√[x/(x-1)]........(1)
再有x²-3x+1=0,得x=(3±√5)/2;
当x=(3+√5)/2时,代入(1)式得√[(x²+1)/(x²-2)]=√[(3+√5)/(1+√5)]
=(1/2)√[(3+√5)(√5-1)]=(1/2)√(2+2√5)
当x=(3-√5)/2时,代入(1)式得√[(x²+1)/(x²-2)]=√[((3-√5)/(1-√5)](虚数,舍去)
故√[(x²+1)/(x²-2)]=(1/2)√(2+2√5).
求√[(x²+1)/(x²-2)]的值
解:由x²-3x+1=0,得x²+1=3x;x²-2=3x-3;故√[(x²+1)/(x²-2)]=√[3x/(3x-3)]=√[x/(x-1)]........(1)
再有x²-3x+1=0,得x=(3±√5)/2;
当x=(3+√5)/2时,代入(1)式得√[(x²+1)/(x²-2)]=√[(3+√5)/(1+√5)]
=(1/2)√[(3+√5)(√5-1)]=(1/2)√(2+2√5)
当x=(3-√5)/2时,代入(1)式得√[(x²+1)/(x²-2)]=√[((3-√5)/(1-√5)](虚数,舍去)
故√[(x²+1)/(x²-2)]=(1/2)√(2+2√5).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询