
这两题怎么算? 5
2个回答
展开全部
(1)
1/(1x2)+1/(2x3)+...+1/[n(n+1)]
=( 1-1/2)+(1/2-1/3)+...+[1/n -1/(n+1) ]
=1 - 1/(n+1)
=n/(n+1)
(2)
1/(1x3)+1/(3x5)+...+1/[n(n+2)]
这个题目有错,应该是
1/(1x3)+1/(3x5)+...+1/[(2n-1)(2n+1)]
=(1/2) { ( 1-1/3)+(1/3-1/5) +....+ [1/(2n-1) - 1/(2n+1)] }
=(1/2) [ 1- 1/(2n+1) ]
=n/(2n+1)
1/(1x2)+1/(2x3)+...+1/[n(n+1)]
=( 1-1/2)+(1/2-1/3)+...+[1/n -1/(n+1) ]
=1 - 1/(n+1)
=n/(n+1)
(2)
1/(1x3)+1/(3x5)+...+1/[n(n+2)]
这个题目有错,应该是
1/(1x3)+1/(3x5)+...+1/[(2n-1)(2n+1)]
=(1/2) { ( 1-1/3)+(1/3-1/5) +....+ [1/(2n-1) - 1/(2n+1)] }
=(1/2) [ 1- 1/(2n+1) ]
=n/(2n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询