如何理解拉格朗日乘子法?
展开全部
举个2维的例子来说明:
假设有自变量x和y,给定约束条件g(x,y)=c,要求f(x,y)在约束g下的极值。
我们可以画出f的等高线图,如下图。此时,约束g=c由于只有一个自由度,因此也是图中的一条曲线(红色曲线所示)。显然地,当约束曲线g=c与某一条等高线f=d1相切时,函数f取得极值。
两曲线相切等价于两曲线在切点处拥有共线的法向量。因此可得函数f(x,y)与g(x,y)在切点处的梯度(gradient)成正比。
于是我们便可以列出方程组求解切点的坐标(x,y),进而得到函数f的极值。
在数学最优问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。
这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询