《九章算术》讲的是什么内容
展开全部
《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,、它们的主要内容分别是:
第一章“方田”:主要讲述了平面几何图形面积的计算方法.包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法.另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法.
第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;
第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致.这是世界上最早的多位数和分数开方法则.它奠定了中国在高次方程数值解法方面长期领先世界的基础.
第四章“少广”:已知面积、体积,反求其一边长和径长等;
第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法; 第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题.今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论.西方直到15世纪末以后才形成类似的全套方法.
第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法.这也是处于世界领先地位的成果,传到西方后,影响极大.
第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致.这是世界上最早的完整的线性方程组的解法.在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则.这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法.这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系.外国则到7世纪印度的婆罗摩及多才认识负数.
第九章“勾股”:利用勾股定理求解的各种问题.其中的绝大多数内容是与当时的社会生活密切相关的.提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n.在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了.勾股章还有些内容,在西方却还是近代的事.例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出.
你可以看一下百度百科的词条,讲得很详细.
第一章“方田”:主要讲述了平面几何图形面积的计算方法.包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法.另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法.
第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;
第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致.这是世界上最早的多位数和分数开方法则.它奠定了中国在高次方程数值解法方面长期领先世界的基础.
第四章“少广”:已知面积、体积,反求其一边长和径长等;
第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法; 第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题.今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论.西方直到15世纪末以后才形成类似的全套方法.
第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法.这也是处于世界领先地位的成果,传到西方后,影响极大.
第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致.这是世界上最早的完整的线性方程组的解法.在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则.这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法.这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系.外国则到7世纪印度的婆罗摩及多才认识负数.
第九章“勾股”:利用勾股定理求解的各种问题.其中的绝大多数内容是与当时的社会生活密切相关的.提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n.在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了.勾股章还有些内容,在西方却还是近代的事.例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出.
你可以看一下百度百科的词条,讲得很详细.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询