当x>1时,证明不等式e^x>xe

 我来答
机器1718
2022-05-23 · TA获得超过6832个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:160万
展开全部
设:f(x)=e^x-ex
则:f'(x)=e^x-e
当x>1时,f'(x)>0
即:函数f(x)在x>1时是递增的,则:
对于任意x>1,都有:f(x)>f(1)=0成立,即:
对一切x>1,有:e^x-ex>0
则:e^x>ex
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式