特征值相乘为什么等于行列式?

 我来答
胡闹闹旅游
高能答主

2022-01-07 · 尝人生酸甜,旅游如梦
胡闹闹旅游
采纳数:203 获赞数:3330

向TA提问 私信TA
展开全部

因为矩阵可以化成对角元素都是其特征值的对角矩阵,而行列式的值不变,对角矩阵的行列式就是对角元素相乘。记矩阵为A,记λ为A的特征值,按照定义有:f(λ)=det(A-λE)=0,f(λ)为A的特征多项式,A的所有特征值为f(λ)=0的根,根据韦达定理,方程的根的乘积与系数的关系,特征值的乘积恰好为矩阵A的主子式的代数和,而这个和等于detA。所以特征值乘积等于行列式的值。

行列式的性质:

1.行列式A中某行(或列)用同一数k乘,其结果等于kA。

2.行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

3.若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

4.行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式