什么是第二换元法?
展开全部
第二换元积分法是变量代换法,主要有三角代换,根式代换和倒代换,适用积分式中有根式的。
换元法是指引入一个或几个新的变量代替原来的某些变量的变量求出结果之后,返回去求原变量的结果.换元法通过引入新的元素将分散的条件联系起来,或者把隐含的条件显示出来,或者把条件与结论联系起来,或者变为熟悉的问题。其理论根据是等量代换。
详细介绍:
第二换元法是把被积函数里的积分变量x换成一个新的函数g(t) 同时把dx也换成[g(t)]'dx 至于g(t)是怎么来的 有一定的规律,但也不是绝对的 通常也是把被积函数里的某部分设成t,再反解出x=g(t)。
第一类换元法是先将函数分为两部分,一部分为u',另一部分为f(u),其中u'dx=du,于是待求积分从f(x)dx转化为f(u)du,而第二类换元法是将x用g(t)代换,再将dx拆分为g'(t)dt从而使积分可求。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询