设f(x)在[0,a]上连续,在(0,a)内可导,且f(0)=0,f(x)的导数单调增,证当0

 我来答
京斯年0GZ
2022-06-30 · TA获得超过6202个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74万
展开全部
令g(x)=f(x)/x,x∈[0,a] g'(x)=[xf'(x)-f(x)]/x^2 另H(x)=xf'(x)-f(x) H'(x)=f'(x)+xf''(x)-f'(x)=xf''(x) ∵f(x)的导数单调递增 ∴f''(x)≥0 显然x>0 所以H'(x)≥0 ∴H(x)为在(0,a)单调递增 ∴H(x)≥H(0)=0-f(0)=0 ∴g'(x)≥0 ∴g(x)在(0,a)上单调递增 ∴当0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式