二进制的四则运算复杂吗
二进制的四则运算不复杂。
二进制四则运算和十进制四则运算原理相同,二进制有两个数码0和1,“满二进一”。
二进制数的算术运算包括:加、减、乘、除四则运算。
(1)二进制数的加法
根据“逢二进一”规则,二进制数加法的法则为:
0+0=0
0+1=1+0=1
1+1=0 (进位为1)
1+1+1=1 (进位为1)
(2)二进制数的减法
根据“借一有二”的规则,二进制数减法的法则为:
0-0=0
1-1=0
1-0=1
0-1=1 (借位为1)
(3)二进制数的乘法
二进制数乘法过程可仿照十进制数乘法进行。但由于二进制数只有0或1两种可能的乘数位,导致二进制乘法更为简单。二进制数乘法的法则为:
0×0=0
0×1=1×0=0
1×1=1
由低位到高位,用乘数的每一位去乘被乘数,若乘数的某一位为1,则该次部分积为被乘数;若乘数的某一位为0,则该次部分积为0。某次部分积的最低位必须和本位乘数对齐,所有部分积相加的结果则为相乘得到的乘积。
(4)二进制数的除法
二进制数除法与十进制数除法很类似。可先从被除数的最高位开始,将被除数(或中间余数)与除数相比较,若被除数(或中间余数)大于除数,则用被除数(或中间余数)减去除数,商为1,并得相减之后的中间余数,否则商为0。再将被除数的下一位移下补充到中间余数的末位,重复以上过程,就可得到所要求的各位商数和最终的余数。
所以,100110÷110=110余10。
说明:乘除法分原码乘法和补码乘法。
逻辑运算:
(1)逻辑“或”运算
又称为逻辑加,可用符号“+”或“∨”来表示。逻辑“或”运算的规则如下:
0+0=0或0∨0=0
0+1=1或0∨1=1
1+0=1或1∨0=1
1+1=1或1∨1=1
可见,两个相“或”的逻辑变量中,只要有一个为1,“或”运算的结果就为1。仅当两个变量都为0时,或运算的结果才为0。计算时,要特别注意和算术运算的加法加以区别。
(2)逻辑“与”运算
又称为逻辑乘,常用符号“×”或“· ”或“∧”表示。“与”运算遵循如下运算规则:
0×1=0或0·1=0或0∧1=0
1×0=0或1·0=0或1∧0=0
1×1=1或1·1=1或1∧1=1
可见,两个相“与”的逻辑变量中,只要有一个为0,“与”运算的结果就为0。仅当两个变量都为1时,“与”运算的结果才为1。