如图在△ABC中,∠A=60°,角平分线BD,CE交于点O,求证OE=OD.

 我来答
faker1718
2022-06-14 · TA获得超过985个赞
知道小有建树答主
回答量:272
采纳率:100%
帮助的人:52.1万
展开全部
证明:∠A=60°,则∠ABC+∠ACB=120°;
BD,CE均为角平分线,则:∠OBC+∠OCB=(1/2)(∠ABC+∠ACB)=60°.
即∠EOB=∠DOC=60°,∠BOC=120°.
在BC上截取BF=BE,连接OF,
∵BO=BO,∠EBO=∠FBO.
∴△EBO≌△FBO,OE=OF;∠FOB=∠EOB=60°.
故∠FOC=∠BOC-∠FOB=60°=∠DOC;
∵CO=CO;∠DCO=∠FCO.
∴△FCO≌△DCO(ASA)
∴:OD=OF
∴:OE=OD.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式