Y=X^2×e^(2X) 求Y的20阶导数
1个回答
展开全部
由莱布尼兹公式:
(uv)(n) = ∑[k=0,n] C[n,k] u(k) v(n-k)
[ x^2×e^(2x) ](n)
=∑[k=0,n] C[n,k] [x^2](k) [e^2x](n-k)
= C[n,0][x^2](0) [e^2x](n) + C[n,1][x^2](1) [e^2x](n-1)+ C[n,2][x^2](2) [e^2x](n-2)
+ ∑[k=n,3] C[n,k] [x^2](k) [e^2x](n-k)
= x^2*2^n*e^2x + n * 2x * 2^(n-1)*e^2x + n(n-1)/2 * 2 * 2^(n-2)e^2x
+ ∑[k=n,3] C[n,k]* 0* [e^2x](n-k)
= x^2*2^n*e^2x + n * 2x * 2^(n-1)*e^2x + n(n-1)/2 * 2 * 2^(n-2)e^2x
(uv)(n) = ∑[k=0,n] C[n,k] u(k) v(n-k)
[ x^2×e^(2x) ](n)
=∑[k=0,n] C[n,k] [x^2](k) [e^2x](n-k)
= C[n,0][x^2](0) [e^2x](n) + C[n,1][x^2](1) [e^2x](n-1)+ C[n,2][x^2](2) [e^2x](n-2)
+ ∑[k=n,3] C[n,k] [x^2](k) [e^2x](n-k)
= x^2*2^n*e^2x + n * 2x * 2^(n-1)*e^2x + n(n-1)/2 * 2 * 2^(n-2)e^2x
+ ∑[k=n,3] C[n,k]* 0* [e^2x](n-k)
= x^2*2^n*e^2x + n * 2x * 2^(n-1)*e^2x + n(n-1)/2 * 2 * 2^(n-2)e^2x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询