已知:xyz=1,x+y+z=2,x^2+y^2+z^2=16求1/(xy+2z)+1/(zy+2x)+1/(xz+2y)的值
展开全部
xy+2z=xy+4-2x-2y=(x-2)(y-2).同理,yz+2x=(y-2)(z-2),zx+2y=(z-2)(x-2).4=(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)=16+2(xy+yz+zx),xy+yz+zx=-6.(x-2)(y-2)(z-2)=xyz-2(xy+yz+zx)+4(x+y+z)-8=13.原式=[(x-2)+(y-2)+(z-2)]...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询