幂级数展开式为什么等于常数?

 我来答
帐号已注销
2022-08-15 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

1/(1-x) = 1+x+x^2+...+x^n+...

integral from 0 to x,

ln(1-x) = x+x^2/2+...+x^n/n+...

lnx = ln(1-(1-x)) = (1-x)+(1-x)^2/2 + ... + (1-x)^n/n + ...

Answer: lnx = -(x-1)+(x-1)^2/2 + ...+ (-1)^n(x-1)^n/n+..., n from 1 to infinity

根据对数换底公式lgx=lnx/ln10

常用展开式ln(1+x)=∑(1,∞)[(-1)^n-1·x^n]/n

成立区间(-1,1]

lgx=lnx/ln10=ln[1+(x-1)]/ln10

用(x-1)替换上面常用展开式中的x即可得到结果

成立区间-1<x-1≤1 即(0,2]

扩展资料:

数项级数式(4)可能收敛,也可能发散。如果数项级数式(4)是收敛的,称为函数项级数(1)的收敛点;如果数项级数式(4)是发散的,称函数项级数(1)的发散点。函数项级数式(1)的所有收敛点的集合称为其收敛域,所有发散点的集合称为其发散域。

对于收敛域上的每一个数x,函数项级数(1)都是一个收敛的常数项级数,因而有一确定的和。因此,在收敛域上函数项级数的和是x的函数,称为函数项级数的和函数,记作s(x)。

参考资料来源:百度百科-幂级数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式