椭圆中过焦点的三角形的面积求解
1个回答
展开全部
设角F1F2P=α F2F1P=β F1PF2=θ 则有离心率e=sin(α+β)/sinα + sinβ 焦点三角形面积S=b^2*tan(θ/2) 证明方法一: 设F1P=c F2P=b 2a=c+b 由射影定理得2c=ccosβ+bcosα e=c/a=2c/2a=ccosβ+bcosα/c+b 由正弦定理e=sinαcosβ+sinβcosα/sinβ+sinα=sin(α+β)/sinα + sinβ 证明方法二: 对于焦点△F1PF2,设PF1=m,PF2=n 则m+n=2a 在△F1PF2中,由余弦定理: (F1F2)^2=m^2+n^2-2mncosθ 即4c^2=(m+n)^2-2mn-2mncosθ=4a^2-2mn(1+cosθ) 所以mn(1+cosθ)=2a^2-2c^2=2b^2 所以mn=2b^2/(1+cosθ) S=(mnsinθ)/2.............(正弦定理的三角形面积公式) =b^2*sinθ/(1+cosθ) =b^2*[2sin(θ/2)cos(θ/2)]/2[cos(θ/2)]^2 =b^2*sin(θ/2)/cos(θ/2) =b^2*tan(θ/2) 双曲线焦点三角形面积公式 若∠F1PF2=θ, 则S△F1PF2=b^2;·cot(θ/2) ·例:已知F1、F2为双曲线C:x^2;-y^;=1的左右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为多 少? 由双曲线焦点三角形面积公式得S△F1PF2=b^2;·cot(θ/2)=1×cot30°, 设P到x轴的距离为h,则S△F1PF2=½×F1F2×h=½2√2×h=√3, h=√6/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询