心形p=a(1+cosθ)(a>0)所围成的图形的面积应该怎么求呢?谢谢!
1个回答
展开全部
心形p=a(1+cosθ)(a>0)所围成的图形对称于极轴,所求的面积是极轴以上部分面积A的两倍
对于极轴以上部分的图形,θ的变化区间是[0,Pai],相应于[0,派]上任一小区间[θ,θ+dθ]的窄曲边扇形的面积近似于半径为a(1+cosθ)、中心角为dθ的圆扇形的面积,因而面积元素为
dA=1/2*a^2*(1+cosθ)^2dθ
求1/2*a^2*(1+cosθ)^2在[0,派]上的定积分,得A=3/4派a^2
心形p=a(1+cosθ)(a>0)所围成的图形的面积为2分之3派a平方
对于极轴以上部分的图形,θ的变化区间是[0,Pai],相应于[0,派]上任一小区间[θ,θ+dθ]的窄曲边扇形的面积近似于半径为a(1+cosθ)、中心角为dθ的圆扇形的面积,因而面积元素为
dA=1/2*a^2*(1+cosθ)^2dθ
求1/2*a^2*(1+cosθ)^2在[0,派]上的定积分,得A=3/4派a^2
心形p=a(1+cosθ)(a>0)所围成的图形的面积为2分之3派a平方
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询