心形p=a(1+cosθ)(a>0)所围成的图形的面积应该怎么求呢?谢谢!

 我来答
一袭可爱风1718
2022-10-17 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6593
采纳率:99%
帮助的人:37.4万
展开全部
心形p=a(1+cosθ)(a>0)所围成的图形对称于极轴,所求的面积是极轴以上部分面积A的两倍
对于极轴以上部分的图形,θ的变化区间是[0,Pai],相应于[0,派]上任一小区间[θ,θ+dθ]的窄曲边扇形的面积近似于半径为a(1+cosθ)、中心角为dθ的圆扇形的面积,因而面积元素为
dA=1/2*a^2*(1+cosθ)^2dθ
求1/2*a^2*(1+cosθ)^2在[0,派]上的定积分,得A=3/4派a^2
心形p=a(1+cosθ)(a>0)所围成的图形的面积为2分之3派a平方
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式