[ln(1+x+x^2)+ln(1-x+x^2)]/x^2 求x趋于零极限
1个回答
展开全部
x趋于0,x + x^2、-x+x^2亦趋于零
将分子在x + x^2处展开成带有皮亚诺余项的泰勒级数:
ln(1+x+x^2) = x+x^2 - [(x+x^2)^2]/2 + O(x^2)
ln(1-x+x^2) = -x+x^2 - [(-x+x^2)^2]/2 + O(x^2)
ln(1+x+x^2) + ln(1-x+x^2) = 2x^2 - (2x^4 + 2x^2)/2 + O(x^2) = x^2 + O(x^2)
所以
[ln(1+x+x^2)+ln(1-x+x^2)]/x^2 x趋于零
= [x^2 + O(x^2)]/x^2 x趋于零
= 1
将分子在x + x^2处展开成带有皮亚诺余项的泰勒级数:
ln(1+x+x^2) = x+x^2 - [(x+x^2)^2]/2 + O(x^2)
ln(1-x+x^2) = -x+x^2 - [(-x+x^2)^2]/2 + O(x^2)
ln(1+x+x^2) + ln(1-x+x^2) = 2x^2 - (2x^4 + 2x^2)/2 + O(x^2) = x^2 + O(x^2)
所以
[ln(1+x+x^2)+ln(1-x+x^2)]/x^2 x趋于零
= [x^2 + O(x^2)]/x^2 x趋于零
= 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询