试卷题目答案

 我来答
810485364
2014-06-26 · TA获得超过2.1万个赞
知道大有可为答主
回答量:7419
采纳率:83%
帮助的人:2795万
展开全部

分析:(1)连接BD,可证明△OBM≌△ODN,则BM=DN;
(2)先证明四边形AMCN是平行四边形,再由翻折得,AM=CM,则四边形AMCN是菱形;
(3)又S△CDN:S△CMN=1:3,可得DN:CM=1:3,设DN=k,则CN=CM=3k,过N作NG⊥MC于点G,则可求出NG和MN,从而求出比值.

解答:

(1)证法一:连接BD,则BD过点O,
∵AD∥BC,
∴∠OBM=∠ODN,
又OB=OD,∠BOM=∠DON,
∴△OBM≌△ODN,
∴BM=DN;

证法二:∵矩形ABCD是中心对称图形,点O是对称中心,
∴B、D和M、N关于O点中心对称,
∴BM=DN;

(2)证法一:
∵矩形ABCD,
∴AD∥BC,AD=BC,
又BM=DN,
∴AN=CM,
∴四边形AMCN是平行四边形,
由翻折得,AM=CM,
∴四边形AMCN是菱形;

证法二:由翻折得,AE=CD,∠E=∠D,∠AMN=∠CMN,
又∵∠ANE=∠CND,
∴△ANE≌△CND,
∴AN=CN.
∵AD∥BC,
∴∠ANM=∠CMN,
∴∠AMN=∠ANM,
∴AM=AN,
∴AM=MC=CN=NA,
∴四边形AMCN是菱形.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式