spark和hadoop的区别

 我来答
聊电子的小璇
高能答主

2022-12-07 · 用力答题,不用力生活
知道小有建树答主
回答量:3654
采纳率:100%
帮助的人:60万
展开全部

spark和hadoop的区别如下:

1、诞生的先后顺序:hadoop属于第一代开源大数据处理平台,而spark属于第二代。属于下一代的spark肯定在综合评价上要优于第一代的hadoop。

2、计算不同:spark和hadoop在分布式计算的具体实现上,又有区别;hadoop中的mapreduce运算框架,一个运算job,进行一次map-reduce的过程;而spark的一个job中,可以将多个map-reduce过程级联进行。

3、平台不同:spark是一个运算平台,而hadoop是一个复合平台(包含运算引擎,还包含分布式文件存储系统,还包含分布式运算的资源调度系统),所以,spark跟hadoop来比较的话,hadoop主要是它的运算部分日渐式微,而spark目前如日中天,相关技术需求量大,offer好拿。

4、数据存储:Hadoop的 MapReduce进行计算时,每次产生的中间结果都是存储在本地磁盘中;而Spark在计算时产生的中间结果存储在内存中。

5、数据处理:Hadoop在每次执行数据处理时,都需要从磁盘中加载数据,导致磁盘的I/O开销较大;而Spark在执行数据处理时,只需要将数据加载到内存中,之后直接在内存中加载中间结果数据集即可,减少了磁盘的1O开销。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式