已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明n/2-1/3?
展开全部
a(n+1)=2an+1即
a(n+1)+1=2(an+1)=2^n(a1+1)=2^(n+1)
所以
a(n+1)=2^(n+1)-1
an=2^n-1
a1/a2+a2/a3+…+an/a(n+1)
=1/3+3/7+...+(2^n-1)/[2^(n+1)-1]
n/2-0.5{1/3+1/6+...+1/[2^(n+1)-2^(n-1)]+1/[2^(n+1)-2^(n-1)]}
=n/2-1/3,3,
jlxiong 举报
>n/2-0.5{1/3+1/6+...+1/[2^(n+1)-2^(n-1)]+1/[2^(n+1)-2^(n-1)]} 为什么?貌似不对 大括号里第一项不变,后面每项变成1/[2^(n+1)-2^(n-1),这样一来就变成了首项1/3,公比为1/2的等比数列,所以我在后面又多加了一个末项,向前累加后刚好等于2/3,乘上外面的0.5就是1/3,数学论证法:
假设 n/2-1/3 ∵n/2-1/3 ∴n/2-1/3+a(n+1)/a(n+2) 0,
iayxy 幼苗
共回答了31个问题 向TA提问 举报
a(n+1)+1=2(an+1)
所以(an+1)/(a(n+1)+1)=1/2
a2=2a1+1=3
a1/a2+a2/a3+...an/a(n+1)
=1/3+1/2+1/2+..1/2 (这里有n-1个)
=1/3+(n-1)/2=n/2-1/6
所以n/2-1/3 0,
a(n+1)+1=2(an+1)=2^n(a1+1)=2^(n+1)
所以
a(n+1)=2^(n+1)-1
an=2^n-1
a1/a2+a2/a3+…+an/a(n+1)
=1/3+3/7+...+(2^n-1)/[2^(n+1)-1]
n/2-0.5{1/3+1/6+...+1/[2^(n+1)-2^(n-1)]+1/[2^(n+1)-2^(n-1)]}
=n/2-1/3,3,
jlxiong 举报
>n/2-0.5{1/3+1/6+...+1/[2^(n+1)-2^(n-1)]+1/[2^(n+1)-2^(n-1)]} 为什么?貌似不对 大括号里第一项不变,后面每项变成1/[2^(n+1)-2^(n-1),这样一来就变成了首项1/3,公比为1/2的等比数列,所以我在后面又多加了一个末项,向前累加后刚好等于2/3,乘上外面的0.5就是1/3,数学论证法:
假设 n/2-1/3 ∵n/2-1/3 ∴n/2-1/3+a(n+1)/a(n+2) 0,
iayxy 幼苗
共回答了31个问题 向TA提问 举报
a(n+1)+1=2(an+1)
所以(an+1)/(a(n+1)+1)=1/2
a2=2a1+1=3
a1/a2+a2/a3+...an/a(n+1)
=1/3+1/2+1/2+..1/2 (这里有n-1个)
=1/3+(n-1)/2=n/2-1/6
所以n/2-1/3 0,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询