函数的有界性和无界性的区别是什么?
1个回答
展开全部
有界:sinx和cosx在R上是有界的。
一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。
无界:y=tanx在开区间(-π/2,π/2)上是无界。y=x,在R内无界。
无界函数,即不是有界函数的函数。也就是说,函数y=f(x)在定义域上只有上界(或只有下界);或者既没有上界又没有下界,称f(x)在定义域上无界,在定义域无界的函数称为无界函数 。
扩展资料:
需要注意的是,有界函数的图形必介于两条平行于x轴的直线y=-M(下界)和y=M(上界)之间(当自变量为x时),笼统地说某个函数是有界函数或无界函数是不确切的,必须指明所考虑的区间。
另外,不能够把无穷大和一个很大常数混为一谈。无穷大一定是无界函数,但无界函数不一定是无穷大。
参考资料来源:百度百科-函数的有界性
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询