设a,b,c,d是正实数,证明:a+b+c+d/abcd≤1/a^3+1/b^3+1/c^3+1/d^3
展开全部
(1/(3a^3)+1/(3b^3)+1/(3c^3))/3>=三次根号(1/(3a^3)*1/(3b^3)*1/(3c^3))=1/(3abc)1/(3a^3)+1/(3b^3)+1/(3c^3)>=1/(abc)=d/abcd同理1/(3a^3)+1/(3c^3)+1/(3d^3)>=1/(acd)=b/abcd1/(3a^3)+1/(3b^3)+1/(3c^3)>=1/(abd)...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询