证明正交实矩阵A的特征值为1或-1.

 我来答
科创17
2022-09-09 · TA获得超过5929个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:178万
展开全部
证:设A是正交矩阵,λ是A的特征值,α是A的属于λ的特征向量
则 A^TA = E (E单位矩阵),Aα=λα,α≠0
考虑向量λα与λα的内积.
一方面,(λα,λα)=λ^2(α,α).
另一方面,
(λα,λα) = (Aα,Aα) = (Aα)^T(Aα) = α^TA^TAα
= α^Tα = (α,α).
所以有 λ^2(α,α) = (α,α).
又因为 α≠0,所以 (α,α)>0.
所以 λ^2 = 1.
所以 λ = ±1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式