(4).设函数y=(2x-3)/(x^2-3x+2),求 y^(
展开全部
y=(2x一3)/(x^2一3x+2),
y'=【2(x^2一3x+2)一(2x一3)(2x一3)】/(x^2一3x+2)^2
=(2x^2一6x+4一4x^2+12x一9)/(x^2一3x+2)^2
=(一2x^2+6x一5)/(x^2一3x+2)^2。
y'=【2(x^2一3x+2)一(2x一3)(2x一3)】/(x^2一3x+2)^2
=(2x^2一6x+4一4x^2+12x一9)/(x^2一3x+2)^2
=(一2x^2+6x一5)/(x^2一3x+2)^2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y = (2x-3)/(x^2-3x+2) = 1/(x-1) + 1/(x-2)
y' = -1/(x-1)^2 - 1/(x-2)^2
y'' = (-1)(-2)/(x-1)^3 +(-1)(=2)/(x-2)^3
...................................................................................
y^(n) = (-1)^n n!/(x-1)^(n+1) + (-1)^n n!/(x-2)^(n+1)
y' = -1/(x-1)^2 - 1/(x-2)^2
y'' = (-1)(-2)/(x-1)^3 +(-1)(=2)/(x-2)^3
...................................................................................
y^(n) = (-1)^n n!/(x-1)^(n+1) + (-1)^n n!/(x-2)^(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询