求导与求极限有什么区别吗?

 我来答
sos66666666666
2022-10-17 · TA获得超过1759个赞
知道小有建树答主
回答量:1181
采纳率:50%
帮助的人:337万
展开全部
求导和求极限是两个完全不同的概念.极限是导数的前提..
首先,导数的产生是从求曲线的切线这一问题而产生的,因此利用导数可以求曲线在任意一点的切线的斜率.
其次,利用导数可以解决某些不定式极限(就是指0/0、无穷大/无穷大等等类型的式子),这种方法叫作“洛比达法则”.
以y=x²为例,当x趋向于1的时候,y也趋向于1,这是极限.
把y=x²对x进行求导,得y=2x,该式的几何意义为函数在x点的切线的斜率为2x
即当x=1时y=2,表示函数y=x²在x=1点这一处的切线的斜率为k=2
y=x²对x求导后之所以会得到y=2x,是利用求切线的方法,在图像上取两点连成直线,当两点不断靠近最终成为一点的时候,该直线也便是图像在该点的切线.而推导求导这一过程的方法用的是求极限法.因此求导和求极限两者本身并不相同.
可以看下楼下@花苗贵树 的答案,很简洁。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式