怎样学好二次函数

 我来答
匿名用户
2016-08-30
展开全部
二次函数
二次函数与圆的知识一样,在初中数学占有重要的地位.对二次函数的考查经常跟方程等知识相结合.

概念与图像

重点难点
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.
(2)理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象,探索掌握二次函数的性质.

内容提要
(1)形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(2)当a<O时,抛物线y=ax2开口向上,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点抛物线上位置最高的点。图象的这些特点,反映了当a<O时,函数y=ax2的性质;当x<0时,函数值y随x的增大而增大;与x>O时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0.
典型一例
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
求增种树的棵数与橙子总产量之间的函数关系.
解:假设果园增种x棵橙子树,果园橙子的总产量为y(个),依题意,果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子.
y=(100+x)(600-5x)
=-5x²+100x+60000.

图象性质
重点难点
(1)确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质.
(2)正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质是难点.

探索求知
1.你能发现函数y=2(x-1)2+1的图象有哪些性质吗?
函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的.
当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1.
2.你能说出函数y=-13(x-1)2+2的图象与函数y=-13x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?
函数y=-13(x-1)2+2的图象可以看成是将函数y=-13x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)

描点法

重点难点
(1)用描点法画出二次函数y=ax2+bx+c的图象;通过配方确定抛物线的对称轴、顶点坐标.
(2)理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)是难点.
探索求知
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?
函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1).
2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的.
3.函数y=-4(x-2)2+1具有哪些性质?
当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1.
4.不画出图象,你能直接说出函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标吗?
因为y=-12x2+x-52=-12(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2).

经典一例
请画出函数y=-12x2+x-52的图象,并说明这个函数具有哪些性质.
分析:由以上探索求知,大家已经知道函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标.根据这些特点,可以采用描点法作图的方法作出函数y=-12x2+x-52的图象,进而观察得到这个函数的性质.
解:(1)列表:在x的取值范围内列出函数对应值表;
x … -2 -1 0 1 2 3 4 …
y … -612
-4 -212
-2 -212
-4 -612

(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点.
(3)连线:用光滑的曲线顺次连接各点,得到函数y=-12x2+x-52的图象.
说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的.
(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观.
则可得到这个函数的性质如下:
当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;
当x=1时,函数取得最大值,最大值y=-2.

解决问题

重点难点
根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,既是这部分知识的重点也是难点.
探索求知
1.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.
(1)y=6x2+12x; (2)y=-4x2+8x-10.
y=6(x+1)2-6,抛物线的开口向上,对称轴为x=-1,顶点坐标是(-1,-6);y=-4(x-1)2-6,抛物线开口向下,对称轴为x=1,顶点坐标是(1,-6).
2. 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?
函数y=6x2+12x有最小值,最小值y=-6,函数y=-4x2+8x-10有最大值,最大值y=-6.
匿名用户
2007-01-01
展开全部
一、理解二次函数的内涵及本质.

二次函数y=ax2 +bx+c(a≠0,a、b、c是常数)中含有两个变量x、y,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形.

二、熟悉几个特殊型二次函数的图象及性质.

1、通过描点,观察y=ax2、y=ax2+k、y=a(x+h)2图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式.

2、理解图象的平移口诀“加上减下,加左减右”.

y=ax2→y=a(x+h)2+k “加上减下”是针对k而言的,“加左减右”是针对h而言的.

总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移.

3、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征;

4、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数a、b、c、△以及由系数组成的代数式的符号等问题.

三、要充分利用抛物线“顶点”的作用.

1、要能准确灵活地求出“顶点”.形如y=a(x+h)2+K→顶点(-h,k),对于其它形式的二次函数,我们可化为顶点式而求出顶点.

2、理解顶点、对称轴、函数最值三者的关系.若顶点为(-h,k),则对称轴为x=-h,y最大(小)=k;反之,若对称轴为x=m,y最值=n,则顶点为(m,n);理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果.

3、利用顶点画草图.在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象.

四、理解掌握抛物线与坐标轴交点的求法.

一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标.如果方程无实数根,则说明抛物线与x轴无交点.

从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与x轴的交点个数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
陀连枝沈燕
2019-07-18 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:27%
帮助的人:1200万
展开全部
二次函数的要点并不是太多,只不过初学者对此生辟,可能没有理解透彻。首先看二次项系数是否为零来判别是否为二次函数,下来要做的工作就是常规的由判别式的正负确定与横坐标轴是否有交点,以及它的定点坐标也是关键。再者就是关于二次函数的图象变换问题,也是考查重点。最重要的题型还当属分情况讨论有无根,有几个根。数学在于多练习,练的多了想必你一定会对二词函数运筹帷幄。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
残_忆_飞_雪
2007-01-01
知道答主
回答量:65
采纳率:0%
帮助的人:0
展开全部
学好的方法是多见题 这么说吧 你初三1个学习能做出来3~4道中考的最后1题你考试就没什么问题 但前提是你多做 老师给的卷子要完成 多找练习 还有就是要问 这是我学好的方法不知道是否合适你
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
表情兔3559
2007-01-02
知道答主
回答量:98
采纳率:0%
帮助的人:0
展开全部
会画图很重要!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式