4个回答
2010-08-19
展开全部
解:
因为AD、BE、CF是角平分线
所以
∠BAD=∠BAC/2
∠ABE=∠ABC/2
∠ACF=∠ACB/2
所以
∠AHE=∠BAD+∠ABE
=∠BAC/2+∠ABC/2
=(∠BAC+∠ABC)/2
=(180°-∠BCA)/2
=90°-∠BCA/2
=90°-∠ACF
=90°-∠GCH
因为HE⊥AC
所以∠CHG=90°-∠GCH
所以∠AHE=∠CHG
因为AD、BE、CF是角平分线
所以
∠BAD=∠BAC/2
∠ABE=∠ABC/2
∠ACF=∠ACB/2
所以
∠AHE=∠BAD+∠ABE
=∠BAC/2+∠ABC/2
=(∠BAC+∠ABC)/2
=(180°-∠BCA)/2
=90°-∠BCA/2
=90°-∠ACF
=90°-∠GCH
因为HE⊥AC
所以∠CHG=90°-∠GCH
所以∠AHE=∠CHG
展开全部
相等关系
解:因为角平分线AD,BE,CF相交于点H,
所以∠BAD=∠BAC/2,∠ABE=∠ABC/2,
在△ABH中,
∠AHE=∠ABH+∠BAH
=∠BAC/2+∠ABC/2
=(∠BAC+∠ABC)/2
=(180-∠ACB)/2
=90-∠ACB/2,
又在直角三角形ACG中,
∠CHG=90-∠ACF
=90-∠ACB/2,
所以∠AHE=∠CHG
解:因为角平分线AD,BE,CF相交于点H,
所以∠BAD=∠BAC/2,∠ABE=∠ABC/2,
在△ABH中,
∠AHE=∠ABH+∠BAH
=∠BAC/2+∠ABC/2
=(∠BAC+∠ABC)/2
=(180-∠ACB)/2
=90-∠ACB/2,
又在直角三角形ACG中,
∠CHG=90-∠ACF
=90-∠ACB/2,
所以∠AHE=∠CHG
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵AD、BE、CF是角平分线
∴∠BAD=∠BAC/2
∠ABE=∠ABC/2
∠ACF=∠ACB/2
∴∠AHE=∠BAD+∠ABE
=∠BAC/2+∠ABC/2
=(∠BAC+∠ABC)/2
=(180°-∠BCA)/2
=90°-∠BCA/2
=90°-∠ACF
=90°-∠GCH
∵HE⊥AC
∴∠CHG=90°-∠GCH
∴∠AHE=∠CHG
∴∠BAD=∠BAC/2
∠ABE=∠ABC/2
∠ACF=∠ACB/2
∴∠AHE=∠BAD+∠ABE
=∠BAC/2+∠ABC/2
=(∠BAC+∠ABC)/2
=(180°-∠BCA)/2
=90°-∠BCA/2
=90°-∠ACF
=90°-∠GCH
∵HE⊥AC
∴∠CHG=90°-∠GCH
∴∠AHE=∠CHG
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
相等啊
∠AHE
=∠HAB+∠HBA
=(∠A+∠B)/2
=(180-∠C)/2
=90-∠C/2
=∠CHG
∠AHE
=∠HAB+∠HBA
=(∠A+∠B)/2
=(180-∠C)/2
=90-∠C/2
=∠CHG
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询