初二数学证明题,急
1个回答
2014-06-22
展开全部
肯定永远成立~
(1)证明:∵将△AOB绕O点旋转到△COD位置,
∴OA=OC,OB=OD,∠BAO=∠DCO,
∵∠AOB=∠COD=90°,
∴∠CAO=∠OCA=45°,∠ODB=∠OBD=45°,
∴∠BAC=∠BAO-∠CAO,∠BDC=∠DCO-∠DBO,
∴∠BAC=∠BDC.
(2)仍成立,
理由是:将△AOB绕O点旋转到△COD位置,
∴OA=OC,OB=OD,∠BAO=∠DCO,
∵∠AOB=∠COD=60°,
∴△ACO、△OBD是等边三角形,
∴∠OCA=∠OBD=∠OAC=60°,
∴∠BAC=∠BAO-∠CAO=∠BAO-60°,∠BDC=∠DCO-∠DBO=∠DCO-60°,
∴∠BAC=∠BDC.
(3)仍成立,
理由是:将△AOB绕O点旋转到△COD位置,
∴OA=OC,OB=OD,∠BAO=∠DCO,
∴∠CAO=∠ACO,∠OBD=∠ODB,
∵∠CAO+∠ACO+∠AOB=180°,∠OBD+∠ODB+∠BOD=180°,
∴∠CAO=∠OBD,
∵∠BAC=∠BAO-∠CAO,∠BDC=∠DCO-∠DBO,
∵∠BAO=∠DCO,
∴∠BAC=∠BDC.
(1)证明:∵将△AOB绕O点旋转到△COD位置,
∴OA=OC,OB=OD,∠BAO=∠DCO,
∵∠AOB=∠COD=90°,
∴∠CAO=∠OCA=45°,∠ODB=∠OBD=45°,
∴∠BAC=∠BAO-∠CAO,∠BDC=∠DCO-∠DBO,
∴∠BAC=∠BDC.
(2)仍成立,
理由是:将△AOB绕O点旋转到△COD位置,
∴OA=OC,OB=OD,∠BAO=∠DCO,
∵∠AOB=∠COD=60°,
∴△ACO、△OBD是等边三角形,
∴∠OCA=∠OBD=∠OAC=60°,
∴∠BAC=∠BAO-∠CAO=∠BAO-60°,∠BDC=∠DCO-∠DBO=∠DCO-60°,
∴∠BAC=∠BDC.
(3)仍成立,
理由是:将△AOB绕O点旋转到△COD位置,
∴OA=OC,OB=OD,∠BAO=∠DCO,
∴∠CAO=∠ACO,∠OBD=∠ODB,
∵∠CAO+∠ACO+∠AOB=180°,∠OBD+∠ODB+∠BOD=180°,
∴∠CAO=∠OBD,
∵∠BAC=∠BAO-∠CAO,∠BDC=∠DCO-∠DBO,
∵∠BAO=∠DCO,
∴∠BAC=∠BDC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询