如何判断一个函数的连续性

 我来答
帐号已注销
2023-03-28 · 超过140用户采纳过TA的回答
知道小有建树答主
回答量:1450
采纳率:31%
帮助的人:36.1万
展开全部
判断函数连续的三种方法:
1、求出该点左右极限,若左极限等于右极限且等于函数在此处的函数值,则说明函数在此点连续。
2、从图像上看,若图像是一条不断开的曲线,则函数连续;若图像从某点处断开,则函数在该点就不连续。
3、若一个函数在该点处可导,那么这个函数一定连续。
函数连续性的定义:设函数f(x)在点x0的某个邻域内有定义,若 lim(xx0)f(x)=f(x0),则称f(x)在点x0处连续。若函数f(x)在区间的每一点都连续,则称f(x)在区间上连续。
函数连续必须同时满足三个条件:
(1)函数在x0处有定义;
(2)xx0时,limf(x)存在;
(3)xx0时,limf(x)=f(x0)。。。。。。
瞿冷农英博
2023-03-25 · TA获得超过4063个赞
知道大有可为答主
回答量:3186
采纳率:31%
帮助的人:197万
展开全部
这类问题一般都是证明在某点处偏导数存在,注意这时切记不能使用求导公式,以一元函数为例,这是因为用求导公式计算出来的导函数f'(x)往往含有间断点,在间断点x0处f'(x)无意义,但这不意味着f'(x0)一定不存在,例如f(x)=(x^2)sin(1/x)
x≠0
=0
x=0
可以验证在可去间断点x=0处,导函数f'(x)无意义,但f'(0)=0存在.
正确方法是用偏导数的定义来验证,偏导数是通过极限来定义的,按定义写出某点(x0,y0)处偏导数的极限表达式(以对x的偏导数为例)lim[f(x,y0)-f(x0,y0)]/(x-x0)(x趋于x0),然后用极限的相关知识来考察这个极限是否存在,这极限是否存在和该点处偏导数是否存在是一致的,因此证明偏导数存在的任务就转化为证明极限存在,这可以通过以下两种途径1,根据极限运算法则求出该极限,只要能求出极限的具体值,就等于证明了极限存在,而不用再费事去证明了;2,如果极限不容易求出,可以考虑用极限存在的准则去证明(例如夹逼准则)极限存在.(如果证明偏导数不存在则用极限的相关理论证明该极限不存在即可)
多说一点,在确定某点处偏导数存在的基础上,往往还要讨论偏导数在该点是否连续,这时才是用求导公式的时候,用求导公式计算出导函数f'x(x,y),这是一个关于x和y的二元函数,求(x0,y0)处二元函数f'x(x,y)的极限,如果这个极限存在且等于该点处的偏导数值,则偏导数连续,否则不连续.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式