函数连续可导,但是不一定可导,为什么?
1个回答
2023-01-22 · 知道合伙人教育行家
关注
展开全部
函数连续可导,但函数可导可不一定连续,所以先考虑怎么分析函数是否连续。设一个函数y=f(x), x在它的定义域内,y有意义。我们接下来谈的都是在x的定义域内。先在x的定义域内任意区一点x',那么y'=f(x'), 我们借助极限的概念, 当x从左边趋近于x'时,看看y是否趋近于y';同理,当x从右边趋近于x'时,看看y是否趋近于y'。如果都成立,我们可以说函数y=f(x), x在它的定义域内是连续的,否则不连续。由函数的连续,可以得到此函数可导。
关于函数的导数和连续有下面四点结论:
1、连续的函数不一定可导.
2、可导的函数是连续的函数.
3、越是高阶可导函数曲线越是光滑.
4、存在处处连续但处处不可导的函数.
左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在).连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次.
关于函数的导数和连续有下面四点结论:
1、连续的函数不一定可导.
2、可导的函数是连续的函数.
3、越是高阶可导函数曲线越是光滑.
4、存在处处连续但处处不可导的函数.
左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在).连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次.
黄先生
2024-12-27 广告
2024-12-27 广告
矩阵切换器就是将一路或多路视音频信号分别传输给一个或者多个显示设备,如两台电脑主机要共用一个显示器,矩阵切换器可以将两台电脑主机上的内容renyi切换到同一个或多个显示器上;迈拓维矩矩阵切换器种类齐全,性价比高,支持多种控制方式,为工程商采...
点击进入详情页
本回答由黄先生提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询