常数列是等差数列吗
1个回答
展开全部
常数列是等差数列。
常数列一定是等差数列,公差为0。若常数列中常数为0,则不是等比数列。若常数不为0,则是等比数列,公比为1。
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
若一个数列的每一项都为一个相等的常数,即an=a1(n∈N*),则数列{an}为“常数数列”,也叫“常数列”。一个常数数列如:2,2,2,2,2,2,...一定是首项为a,公差为0的等差数列。所有常数数列(除an=0外)均是首项为a,公比为1的等比数列。常数数列的实质就是零阶等差数列。
常数数列的通项式:an=a₁。
常数数列的前n项和:Sn=na₁。
常数数列的前n项积:Tn=a₁^n。
常数数列的递推式:an=an+₁。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询