一般来说神经网络算法的第一步
一般来说,神经网络算法的第一步是学习。在这个过程中,神经网络需要不断 突触的数值,以便改进算法表现,更好地完成分配给它的任务。
人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成;
具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。BP(Back Propagation)算法又称为误差 反向传播算法,是人工神经网络中的一种监督式的学习算法。
BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。
而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许 多领域都有着广泛的应用前景。
人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。
一般来说,神经网络算法的第一步是学习。
在这个过程中,神经网络需要不断调整突触的数值,以便改进运算表现,更好地完成分配给它的任务。不幸的是,算法用来识别神经网络中突触正确数值的技术来自于一套复杂的数学方法,被称为“反向传播”。这个过程需要执行一系列高精度运算,会消耗大量能量。
神经网络算法的思维是指根据逻辑规则进行推理的过程,它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生的想法或解决问题的办法。
神经网络的研究工作有以下几方面:
1、生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
2、网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
3、人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构造专家系统、制成机器人等等。