一次函数图像恒过定点吗?

 我来答
小葡萄学姐
高粉答主

2023-01-22 · 专注解答生活问题,让生活更快乐
小葡萄学姐
采纳数:447 获赞数:432706

向TA提问 私信TA
展开全部

具体问题,需要具体分析的。

(1)对于一次函数,解析式化成y-b=k(x-a)的形式,令x=a,y=b,无论k取何不为0的实数,等式恒成立。函数图像恒过定点(a,b)

(2)对于二次函数,解析式化成y=a(x+b)+c的形式,令x=-b,y=c,无论a取何不为0的实数,等式恒成立。函数图像恒过定点(-b,c)

(3)对于指数函数,令x=0,得y=1,无论底数a取何大于0且不等于1的实数,等式恒成立。指数函数图像恒过定点(0,1)

产生历史

16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数  。

德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。

欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。

瑞地测控
2024-08-12 广告
在苏州瑞地测控技术有限公司,我们深知频率同步与相位同步的重要性。频率同步确保两个或多个设备的时钟频率变化一致,但相位(即时间点)可保持相对固定差值。而相位同步,即时间同步,要求不仅频率一致,相位也必须完全一致,即时间差恒定为零。相位同步的精... 点击进入详情页
本回答由瑞地测控提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式