高二数学题,急!!
已知函数f(x)=2mx²-2(4-m)x+1,g(x)=mx若对于任意实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是?????要步骤@!...
已知函数f(x)=2mx²-2(4-m)x+1,g(x)=mx若对于任意实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是?????
要步骤@!@@@ 展开
要步骤@!@@@ 展开
2个回答
展开全部
分三种情况讨论。(一)当m=0时,f(x)=-8x+1,g(x)=0.此时显然不合题意。故m≠0.(二)当m<0 时,若x>0,则函数g(x)=mx<0,这就要求函数f(x)在x≥0时,恒有f(x)>0.实际上数形结合可知,当m<0时,抛物线f(x)开口向下,f(x)=2mx²-2(4-m)x+1在x≥0上不恒为正。故m<0不合题设。(三)当m>0 时,同前讨论可知,在x≤0时,恒有2mx²-2(4-m)x+1>0.此时抛物线对称轴为x=(4-m)/(2m).若对称轴在右时,即0<m≤4时,显然成立。若对称轴在左时,即m>4时,必有f[(4-m)/2m]>0,===>2<m<8.综上可知,0<m<8.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询