矩阵的秩为什么小于或等于矩阵行列的最小值?

 我来答
晓晓老师聊民生
2023-06-30
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

矩阵的秩小于等于矩阵行列的最小值的原因有以下方面:

定理:矩阵的行秩,列秩,秩都相等。初等变换不改变矩阵的秩。如果A可逆,则r(AB)=r(B),r(BA)=r(B)。矩阵的乘积的秩Rab<=min{Ra,Rb};

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。



扩展资料:

变化规律

1、转置后秩不变。

2、r(A)<=min(m,n),A是m*n型矩阵。

3、r(kA)=r(A),k不等于0。

4、r(A)=0 <=> A=0。

5、r(A+B)<=r(A)+r(B)。

6、r(AB)<=min(r(A),r(B))。

7、r(A)+r(B)-n<=r(AB)。

证明:

AB与n阶单位矩阵En构造分块矩阵,|AB O|,|O En|,A分乘下面两块矩阵加到上面两块矩阵,有,|AB A|,|0 En|,右边两块矩阵分乘-B加到左边两块矩阵,有|0 A |,|-B En|,所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B),即r(A)+r(B)-n<=r(AB)。

注:这里的n指的是A的列数。这里假定A是m×n矩阵。特别的:A:m*n,B:n*s,AB=0 -> r(A)+r(B)<=n。

8、P,Q为可逆矩阵, 则 r(PA)=r(A)=r(AQ)=r(PAQ)。 

9、若矩阵可相似对角化则矩阵的秩等于矩阵非零特征值的个数。

参考资料来源:百度百科-矩阵的秩

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式