展开全部
∫(sinx+cosx)/(sinx-cosx) dx
=∫(sinx+cosx)^2/[(sinx)^2-(cosx)^2] dx
=-∫ (1+ sin2x)/cos2x dx
=-∫ ( sec2x + tan2x) dx
= - [(1/2)ln|sec2x+ tan2x| - (1/2)ln|cos2x| ) + C
=(1/2)ln |cos2x/(sec2x+tan2x)| + C
∫√ [(1+x)/(1-x)] dx
=∫ [(1+x)/√(1-x^2)] dx
let
x= siny
dx = cosy dy
∫ [(1+x)/√(1-x^2)] dx
=∫ (1+siny) dy
= y - cosy + C
= arcsinx -√(1-x^2) + C
=∫(sinx+cosx)^2/[(sinx)^2-(cosx)^2] dx
=-∫ (1+ sin2x)/cos2x dx
=-∫ ( sec2x + tan2x) dx
= - [(1/2)ln|sec2x+ tan2x| - (1/2)ln|cos2x| ) + C
=(1/2)ln |cos2x/(sec2x+tan2x)| + C
∫√ [(1+x)/(1-x)] dx
=∫ [(1+x)/√(1-x^2)] dx
let
x= siny
dx = cosy dy
∫ [(1+x)/√(1-x^2)] dx
=∫ (1+siny) dy
= y - cosy + C
= arcsinx -√(1-x^2) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询