设向量a=(4cosA,sinA),b=(sinB,4cosB),c=(cosB,-4sinB)

(1)若a与b-2c垂直,求tan(A+B)的值。(2)求|b+a|的最大值。(3)若tanAtanB=16,求证a平行b... (1)若a与b-2c垂直,求tan(A+B)的值。
(2)求|b+a|的最大值。
(3)若tanAtanB=16,求证a平行b
展开
 我来答
匿名用户
2014-01-17
展开全部
(1)向量a=(4cosa,sina),b-2c=(sinβ-2cosβ,4cosβ+8cosβ)
因为a与b-2c垂直,则a(b-2c)=0
所以4cosa(sinβ-2cosβ)+sina(4cosβ+8cosβ)=0
整理得4(sinacosβ+cosasinβ)-8(cosacosβ-sinasinβ)=0
即4sin(a+β)-8cos(a+β)=0得tan(a+β)=2
(2)向量b+c=(sinβ+cosβ,4cosβ-4sinβ)
|b+c|=√(sinβ+cosβ)�0�5+(4cosβ-4sinβ)�0�5=√17-30sinβcosβ=√17-15sin2β
所以|b+c|的最大值为√17+15=√32=4√2
(3)由tanatanβ=16,得sinasinβ=16cosacosβ
即sinasinβ-4cosa4cosβ=0
所以a//b
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式